A nonvoxel-based dose convolution/superposition algorithm optimized for scalable GPU architectures.
نویسندگان
چکیده
PURPOSE Real-time adaptive planning and treatment has been infeasible due in part to its high computational complexity. There have been many recent efforts to utilize graphics processing units (GPUs) to accelerate the computational performance and dose accuracy in radiation therapy. Data structure and memory access patterns are the key GPU factors that determine the computational performance and accuracy. In this paper, the authors present a nonvoxel-based (NVB) approach to maximize computational and memory access efficiency and throughput on the GPU. METHODS The proposed algorithm employs a ray-tracing mechanism to restructure the 3D data sets computed from the CT anatomy into a nonvoxel-based framework. In a process that takes only a few milliseconds of computing time, the algorithm restructured the data sets by ray-tracing through precalculated CT volumes to realign the coordinate system along the convolution direction, as defined by zenithal and azimuthal angles. During the ray-tracing step, the data were resampled according to radial sampling and parallel ray-spacing parameters making the algorithm independent of the original CT resolution. The nonvoxel-based algorithm presented in this paper also demonstrated a trade-off in computational performance and dose accuracy for different coordinate system configurations. In order to find the best balance between the computed speedup and the accuracy, the authors employed an exhaustive parameter search on all sampling parameters that defined the coordinate system configuration: zenithal, azimuthal, and radial sampling of the convolution algorithm, as well as the parallel ray spacing during ray tracing. The angular sampling parameters were varied between 4 and 48 discrete angles, while both radial sampling and parallel ray spacing were varied from 0.5 to 10 mm. The gamma distribution analysis method (γ) was used to compare the dose distributions using 2% and 2 mm dose difference and distance-to-agreement criteria, respectively. Accuracy was investigated using three distinct phantoms with varied geometries and heterogeneities and on a series of 14 segmented lung CT data sets. Performance gains were calculated using three 256 mm cube homogenous water phantoms, with isotropic voxel dimensions of 1, 2, and 4 mm. RESULTS The nonvoxel-based GPU algorithm was independent of the data size and provided significant computational gains over the CPU algorithm for large CT data sizes. The parameter search analysis also showed that the ray combination of 8 zenithal and 8 azimuthal angles along with 1 mm radial sampling and 2 mm parallel ray spacing maintained dose accuracy with greater than 99% of voxels passing the γ test. Combining the acceleration obtained from GPU parallelization with the sampling optimization, the authors achieved a total performance improvement factor of >175 000 when compared to our voxel-based ground truth CPU benchmark and a factor of 20 compared with a voxel-based GPU dose convolution method. CONCLUSIONS The nonvoxel-based convolution method yielded substantial performance improvements over a generic GPU implementation, while maintaining accuracy as compared to a CPU computed ground truth dose distribution. Such an algorithm can be a key contribution toward developing tools for adaptive radiation therapy systems.
منابع مشابه
Real-time dose computation: GPU-accelerated source modeling and superposition/convolution.
PURPOSE To accelerate dose calculation to interactive rates using highly parallel graphics processing units (GPUs). METHODS The authors have extended their prior work in GPU-accelerated superposition/ convolution with a modern dual-source model and have enhanced performance. The primary source algorithm supports both focused leaf ends and asymmetric rounded leaf ends. The extra-focal algorith...
متن کاملEvaluating Performance of Algorithms in Lung IMRT: A Comparison of Monte Carlo, Pencil Beam, Superposition, Fast Superposition and Convolution Algorithms
Background: Inclusion of inhomogeneity corrections in intensity modulated small fields always makes conformal irradiation of lung tumor very complicated in accurate dose delivery.Objective: In the present study, the performance of five algorithms via Monte Carlo, Pencil Beam, Convolution, Fast Superposition and Superposition were evaluated in lung cancer Intensity Modulated Radiotherapy plannin...
متن کاملDose Calculations for Lung Inhomogeneity in High-Energy Photon Beams and Small Beamlets: A Comparison between XiO and TiGRT Treatment Planning Systems and MCNPX Monte Carlo Code
Introduction Radiotherapy with small fields is used widely in newly developed techniques. Additionally, dose calculation accuracy of treatment planning systems in small fields plays a crucial role in treatment outcome. In the present study, dose calculation accuracy of two commercial treatment planning systems was evaluated against Monte Carlo method. Materials and Methods Siemens Once or linea...
متن کاملPoint Dose Measurement for Verification of Treatment Planning System using an Indigenous Heterogeneous Pelvis Phantom for Clarkson, Convolution, Superposition, and Fast Superposition Algorithms
Background: Nowadays, advanced radiotherapy equipment includes algorithms to calculate dose. The verification of the calculated doses is important to achieve accurate results. Mostly homogeneous dosimetric phantoms are available commercially which do not mimic the actual patient anatomy; therefore, an indigenous heterogeneous pelvic phantom mimicking actual human pelvic region has been used to ...
متن کاملHalf Beam Block Technique in Breast Cancer and It’s Dosimetric Analysis using different Algorithms
Introduction: Single isocentre half-beam block (HBB) technique permits the avoidance of hot and cold spots. This technique is very useful in sparing the underlying ipsilateral lung and heart, if the left breast is treated. The major advantage of this technique is that it facilitates the complete sparing of both contralateral breast and lung. Regarding this, the present study aimed to analyse th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Medical physics
دوره 41 10 شماره
صفحات -
تاریخ انتشار 2014